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Abstract. The space of polynomials maps onto itself under affine transformat'tons,%.

This suggests that a moment reformulation of continuous wavelet transform (CWT) theory (the
affine convolution W ¥ (a, b) = % /o5, dx W(()‘a;b))\l/(x), of a signal, or wavefunctiony (x))

should lead to significant simplifications in its implementation. We present a comprehensive
formalism, with numerical examples, that inextricably links moment quantization (MQ) and
CWT theory. For rational fraction potential problems and mother wavelets of the form
Wi(x) = 8.e2™ (Q(x) an appropriate polynomial), MQ permits a more efficient and accurate
(in a pointwise convergent sense) CWT implementation; whereas, CWT broadens the scope of
applicability for MQ methods, and is its natural extension when a more global approximation is
desired. Our formalism also gives one justification for the empirical superiority manifested by
previous MQ studies, as compared with dyadic wavelet reconstruction methods. We implement
our formalism in the context of the quartic, sextic and octic anharmonic oscillator potentials, and
demonstrate the flexibility of the method by treating both the Mexican hat wavelet transform,

as well as that based on the mother wavélétx) = afe*"“.

1. Introduction

The space of polynomials of degre¥, Py(x), maps onto itself under the affine
transformation,x — "[;t” This simple observation underlies the theoretical simplicity
that a moment-based analysis can bring to important problems such as the inverse (map)
problem for affine, self-similar fractals (Handy and Mantica 1990, Bessis and Demko 1991),
or the continuous wavelet transform (CWT) analysis of one-dimensional Sturm-Liouville
problems in quantum mechanics (Handy and Murenzi 1996, 1997).

In several recent works, Handy and Murenzi (HM) have shown that moment quantization
(MQ) methods, involving properly scaled and translated power momenis(p) =
[ dx xPe2@) W (x +b), can be used to generate the associated CWT (Grossmann and Morlet
1984, Mallat 1989)

(x

WW(a, b) = ﬁf dr [8% €27 (x) (1.1)

\/E -0 “
of one-dimensional discrete statdg(x), without the need for any theoretical approximations
(¢ = % the inverse scale parameter). That is, one does not have to approximate the
Schibdinger equation through a discretized, Galerkin-wavelet, type of analysis, as has
been done in many other (numerical analysis) works (Gomes 1997). Instead, one can
transform the Sclidinger equation exactly into a finite set of first-order ¢ coupled
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9898 C R Handy and R Murenzi

differential equations for the:,,(p)’'s. The numerical integration of these equations
generateV V¥ (a, b), since it is linearly dependent on a finite subset of the moments. One
can then use dyadic frame (CWT formulae, refer to equation (2.2)) to reconstruct the desired
wavefunction (Daubechies 1991).

Alternatively, the asymptotico{ — oo0) behaviour of the numerically integrated
moments can also be used to directly recover the wavefunction (equation (2.3)). This
approach has been shown by HM to yield superior (pointwise) results to those based on
CWT-dyadic frame reconstruction. One of the important results of this work (section 3)
is the proof that the asymptotic reconstruction approach is equivalent to a CWT analysis
which integrates over all scales and translations (equati@?)}3 in contrast to the dyadic
formula which samples over dyadic scale and translation parameter values. Although
this involves a straightforward analysis (which is nevertheless not widely known within
the quantum physics community), in the present context of MQ, it is a very important
result because it clearly demonstrates that the developmentf-enoment wavefunction
reconstruction theory directly leads to one of the more important (group theory based)
formulae in signal/continuous wavelet reconstruction. This is widely unappreciated, despite
the fact that it yields an important and different perspective on the general concern of the
classic moment problem: the reconstruction of a function from its moments (Shohat and
Tamarkin 1963, Akhiezer 1965).

Accordingly, this work presents a complete MQ formalism (for determining the energy
and wavefunction), in one dimension, and establishes the unequivocal equivalence between
MQ and CWT theory within the context of Sdidinger problems with rational polynomial

potential functions; and wavelet kernelg,e2“™), for which Q(x) is a polynomial and

[ dxe2®) < co. Despite these restrictions, they still define a broad class of interesting
physics problems.

It should be stressed that although CWT has been applied to many physical and
mathematical systems, relatively little has been done with respects to quantum mechanics.
The few existing works, other than those of HM, have either been highly specialized or
involved a variational analysis utilizing discrete wavelet bases (Paul 1984, Plantevin 1992,
Choet al 1993, Wei and Chou 1996, Tymczak and Wang 1997). Other than the cited works
by HM, and the present effort, no other researchers have investigated the direct (and exact)
transformation of the Schdinger equation into a CWT representation (or an equivalent
one), its resolution therein, and the requisite inversion to recover the solution. As noted,
this work presents such a complete analysis for the class of problems defined above.

Until now, the investigations by HM have been limited solely to #exican hat
wavelet, corresponding t@(x) = —%xz. We extend this analysis to other choices of
wavelet functions, such a@(x) = —%x4. Also, we present a simpler formalism allowing
the extension of the HM method to excited states.

Finally, our numerical examples focus on the important problems corresponding to the
guartic, sextic and octic anharmonic oscillator potentials. In each case, we examine the
first three symmetric states. The extension to other states is immediate, but not presented
here for reasons of simplicity of presentation. The previous investigations by HM have
focused on the ground and second excited states for the quartic anharmonic oscillator,

V(x) = mx? + gx* the ground state of the rational polynomial potentialy) = #‘\12
and the ground state of the Bohr atoi(r) = 1/r. The restriction to theground state
for the latter two cases was only for simplicity. The numerical examples presented in this

work broaden the scope of applicability of the HM method.
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2. Essentials of the moment-wavelet quantization formalism

We highlight some of the salient features of the HM formalism essential to this work. A
fuller discussion may be found in the cited references.

Under the aforementioned conditions (rational potentials and polynofiia)’s), the
wavelet transform is a finite superposition

1
WW(a,b) =) Dila]pali] (2.1a)
i=1
of the scaledd, o = 51) and translatedh) moments,

Hap(p) = / dx x”e2 W (x + b) p=0. (2.10)

For the class of Hamiltonians being considered, all of the,(p) moments are linearly
dependent on a finite subsédiy, ()]0 < I < my}, referred to as thenissing moments
(ms is problem dependent). We show in the context of deriving equation (2.8) how the
underlying Schisdinger equation can be transformed into a finite set of coupled differential
moment equations, first order i, for arbitrary translation parameter value. This allows
one to relate the missing moments at a given scale to those at another scale. Note that the
to.»(p) moments have a trivialb® dependence and are simple linear superpositions of the
to.o(p) moments (refer to equation (2.10)).

Once the infinite scale, zero translation, moments are determinedct andb = 0),
as well as the physical energy valug, it is a simple matter to (numerically) integrate the
referenced equations in order to obtain fhe,(p) moments for alla, b values, thereby
generatingW W (a, b) as well. This defines a multiscale process in which infinite scale
information enables the generation of the small-scale structure, all the waystd®.

Given WV (a, b) for all scale and translation parameter values, one may use it to recover
the corresponding discrete state wavefunction through dyadic reconstruction formulae of the
type (for the Mexican hat wavelet (Daubechies 1991))

2 1 (x —n2™)
w(x)”_6.819;Wm’”ﬁW< T ) (2.2)

whereWw,, , = WW (2", n2"), W(x) = N32e®, Q(x) = —%, and\ = —%n—%.
Alternatively, one can use the asymptotic relations (Handy and Murenzi 1996, 1997)

Lim, o <M) — Wb 2.3)

al*Pv(p)

providedv(p) = ff;o dy y?e?™ = 0. The HM numerical results show the latter to be
more effective than the dyadic formula, for the cases studied. We will return to this point
shortly.

2.1. Moment quantization

An implicit, key component, of the preceding formalism is the determination of the infinite
scale moments{uoo(/)}, and the physical energy valug, This is accomplished through

the general procedure of MQ. MQ of the Sgtiinger equation involves transforming the
configuration space representation into a moment equation and solving for the physical
energy and corresponding o(/) moments.
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For the class of Hamiltonians being considered, the moments satisfy a homogeneous,
finite difference relation (moment equation) of the generic form (assuming no anomalous
singular behaviour in the coefficients):

//La,b(n +my+1) = Z Ca,b,E[ns l]//‘a,b(n +1) n=0 (24)
=0
wherem; is problem dependent (tlissing momenatrder), and the coefficient€,, , g[n, []
are algebraically or numerically determinable as functions of the energy variable,
It follows that all of the momentsy, »(p), corresponding tp > m, + 1 are linearly
dependent on the firgt;, + 1 moments{u,»(1)|0 < I < my}, the missing moments:

mg
ap(P) =Y Mope(p,Ditap()  p>0. (2.5)
=0
Self-consistency require¥, , ¢ (i, j) = &, ;, for 0< i, j < my.
The missing moments, at some convenient set of values for the scale and translation
variables (usually: a, = o0, @, = 0 and b, = 0), must satisfy some appropriate
normalization condition. We usually take it to be

> o) = 1 (2.6)
=0

At a fixed set of values for the scale and translation parametér$*), one can use
MQ techniques to determine the physical values for the associated moments and energy.
Of course, since quantization is a global problem, the larger the sgale 6o, a — 0)
the better the moments correspond to extensive (nonlocal) objects. As such, the available
MQ schemes are only suitable for sufficiently large-scale values, prefesablyso, and
(essentially) arbitrary values.

Various MQ prescriptions have been developed by several groups (Blankenbeckler
et al 1980, Killingbecket al 1985, Handy and Bessis 1985, Fernandez and Ogilvie 1993,
Tymczaket al 1998a, b); however, the eigenvalue moment method (EMM) by Handy and
Bessis (1985) and Handyt al (1988a, b) is particularly relevant to this work for two reasons.
First, it is one of the few that emphasizes the role of the missing moments. Secondly, its
guantization prescription for determining the energy and missing moments, as described the
appendix, underscores the importance of polynomials with respects to forming an invariant
set under scalings and translations. This is reviewed in the appendix. The work of Tymczak
et al (1998) also solves for the missing moments and can be used in place of the EMM
approach.

2.2. Generating the missing moments at all scales

We can use the preceding relations to generate the missing moments at all scales, based
on knowledge of the missing moments at a predetermined (large) scaled Lgk) =
@Iy (x 4+ b). From Q(x)’s (assumed) polynomial structured(x) = Zfiod,-xi, it

follows that

Buttan(l) = / dr x ™ 0/ (@x) D (1) (2.73)

or

lo
Buttas (D) =Y idid pag (U + 1) (2.70)
i=0
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for 0 <1 < m,

Through equation (2.5), the r.h.s. of equatiorvg2 can be transformed into a sum over
the missing moments. There then ensues a coupled settof: 1 first-order differential
equations relevant in determining the moments for all scales.

Ha,b(0) Moolea,b, E] . Mojla,b, E] . Mom,[e, b, E]
a_ Ma,b(i) = . . ./\/li’j[Ol, b, E]
o
Ma.b(ms) Mm;,O[av b, E] . me,j[av b, E] . va,mx[a’ bs E]
:uot,b(o)
X /Loz,b(j) . (28)
Ma,b(ms)

Knowledge of the physical energy valuE, and missing moments at a fixédvalue
anda = oo (¢ = 0) will allow the integration of the above equations. However, a fortunate
simplification arises in that at = oo, the {00(/)|0 <! < m,} moments determine all the
moments:{uo,(1)|0 < I < mg}. This follows from the simple relation

+oo +oo
mop(p) = / xPW(b+x)dr = / (x = b)PW(x) dx (2.9)
or (expanding)
P
nos(p) = (S) (=b)P"po,0(q). (2.10)
q=0

As previously notedE and{uo0(1)|0 < I < m,} are obtainable through MQ.

In some of the examples to be presented, particularly for the excited states, it will
be necessary to integrate equation (2.8) in a different manner. Specifically, through an
analogous set of first-order differential equations with respect$’tonNe can obtain the
{M 1 »DI0 < I < mg} moments corresponding to some (large) finite value for the scale

varlable as. This is achieved by integrating the appropriate equations starting from the
EMM determined values foml o010 < I < mg}. Once the{;“ >0 <1 < my)
moments are known, fop| < B one can then use them to initialize the integration of
equation (2.8) in both directionst — 0 anda — oo.

In HM'’s original work, their numerical experiments revealed that the asymptotic moment
reconstruction approach (equation (2.3)) was far superior to the dyadic-frame reconstruction
in equation (2.2). The details of their analysis are summarized below.

Let —B < b < B define the range db values considered in the context of integrating
equation (2.8), andnyin(b) define the smallest value that one can reach through numerical
integration initiated ats’. Upon considering all the dyadic formula integer pairs, n)
in equation (2.2) consistent withyin(b) < 2" and —B < n2" < B, (i.e.a = 2" and
b = n2™"), for which the wavelet transfor? W (a, b) is numerically calculable, the resulting
reconstructed configuration was worse than that obtained through equation (2.3) (for the
Mexican hat wavelet case). One additional complication in implementing this is the fact
that the case = 0 andm — oo can only be approximated. That is, in practice, one must
takem < M.

Such numerical results might suggest that the use of wavelets is ineffective in recovering
guantum states. However, this is erroneous since the asymptotic formula in equation (2.3)
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corresponds to an exact wavelet reconstruction ansatz wherein one is integrating over all
scales and translation parameter values. This is presented in the following section.

3. Moment quantization reconstruction and CWT analysis

In this section we shall prove that the asymptotic limit reconstruction ansatz in equation (2.3)
is a continuous wavelet analysis result. First, let us generalize it by working with

Ug[a,b]z%/oo %s<(x;b)>\p(x) a>0 (3.1)

oo

wherev = jf"oo dy S(y) # 0. The functionS(y) is arbitrary, providedv is nonzero, and
it is at least differentiable to first order. We also assuing) to be well behaved. It
readily follows that Lim_.oUs[a, b] = W(b). Intuitively, the expressiontS(4=2) is
approximating the Dirac functiod,(x — b) asa — 0. Clearly, better choices df function
will increase the rate of pointwise convergence to the underlying funciigh).

This pointwise result irb may be rewritten as

— /00 da 9,Usla, b] = Uslay, b] (3.2)
ay
or (ar — 0)
— /oo da 9,Us[a, b] = Y (b) (3.3)
0

assumingUs[oo, b] = 0.
Combining the above results, there follows:

W(b) = E/wd_‘z’/oo dx]-‘(—x _b)\IJ(x) (3.49)
V 0 a —00 a
where
) e (e (52 ()
a a a a a a
or
F(z) = 9.[25(2)]. (3.4p)

The function F takes on the manifest form of a wavelet. Indeeds(t) = e‘%zz, then

F(z) = —azze‘%zz, the Mexican hat wavelet (up to a normalization constant); however, this
is not the objective of the present analysis.

The relation in equation (3.3) only integrates over all scales. In order to obtain a result
which also integrates over all translations, one must rewkitas a convolution integral:

()= Lo () () @
a oo @ a a
(note rh.s. = ffzo d—éD(ﬁJi)W(i;")) for arbitrary W and D, provided the respective

a

Fourier transforms satisfy
Fk) = V2rW(R)D(K). (3.50)
Inserting equation (3a) into equation (3.4) results in

1 [(®da [ —b
Uslay, b] = ;/ a—‘g/_ ng(%) WW(a, ) (3.69)

ar




On the equivalence of moment quantization 9903

or
W(b) = }/m d—f/m ds D (u) WW(a, £) (3.60)
VJo a2 J-x a

whereWW(a, &) = [~ %W("ui)\ll(x) will denote the wavelet transform df (if besides

satisfying equation (3.8), one also hA%(0) = 0).
Combining equations (8b) and (35b) one obtains

—kdS(k) = V22N (k) D(k). (3.7)

One important observation is that § is well behaved (i.e.S(k) diﬁerpnt[able and
asymptotically vanishing, ané,S(k) L* integrable), then not only ig dk HP® — o,

but also

/dk % < 00 (3.89)
which is the more general wavelet condition. The normalization const@given by

v =~/2758(0) = 2r /oo dk m (3.80)
or i

v=+/278(0) = —27 /o dk m (3.80)

where §(£o00) = 0.

The importance of the preceding derivation is that in those cases wiieye= 2™
and Q(x) is a suitable polynomial (regardless of the choice of mother wavelet and dual
functions, provided they satisfy equation (3.7)), then the integral in equatiéh) (@r its
approximation through equation.€&), for suitably smalla;) is equivalent to determining
the asymptotic limit in equation (2.3) through MQ methods and (numerical) integration of
the corresponding coupled first-order equations symbolized in equation (2.8).

Alternatively, S(x) may not be of the aforementioned type; however, the adopted
mother wavelet does involve such an exponenti&l,= e?®). One can then determine
the wavelet transform through our moment analysis, and utilize equation (3.6) (together
with a prespecified dual function) to reconstruct the desired solution.

In the various works by HM, they make repeated use of the Mexican hat wavelet

transform corresponding to the mother wavelet functioh; (x) = D;,(x) = —Nhafe*%
N, = jﬁ (normalized according t(fdx|l/v,,(x)|2 = 1). The Fourier transform is
Wh k) = /\/hkze‘% The correspondin@(k) is

—k 9 S(k) = V2r NPk e (3.%)
or

Stk = J?Nf(l + ke (3.%)
with configuration representation (designatedSgs

V2 1 .
So2(x) = —3”/\/,12 (§ — —x2> e, (3.10)
22 2 4
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This result is very different from what HM used in their various works. Their asymptotic
12
limits for the moments (equation (2.3)) were based on uslslg) = €z and S>(x) =

x2e—§. However, no significant disparity is possible between the moment asymptotic
limits derived usingSy, and those obtained by HM, since a simple linear superposition
of the latter yields the former. Specifically, using self-explanatory notatigp[0, b] =
777125 Uso[0. b] — “BUs,[0, b]], which becomes ((0) = v(2) = v/21) Ug,[0, 5] =
%[3 Us, [0, b]—-Us,[O, b]] however, this is an identity sinc& (b) = Us,,[0, b] = Us,[0, b] =
Us, [0, b]. i

For the unnormalized Mexican hat waveléi(x) = —afe‘% and the exponential dual,

2 2 A

D(x) = €z, the corresponding is S(x) = %ﬁe T (Stk) = @e*"z).

Upon choosing an appropriat&x), and a correspondinyV, D pair, it follows from
equation (3a) that knowledge of the wavelet transforiv W (q, £) within the strip
R2 = [ay, 00) x (—00, +00) allows us to calculate the approximation to the wavefunction
\Ifapprox(b) = Uslay, b] derived by numerically integrating equation (2.8) fram= 0 to

An interesting observation is that (k) = e~ and D(k) = T4z, then W(k)

k21 + kz)e*%. The inverse Fourier transforms ad/(x) = 92(3% — 1)e*T and
D(x) = ,/Ze . The corresponding wavefunction reconstruction formula is

W(b) = /ﬂ/ / de e 1T IWw(a, £) (3.11a)
2v 0
where

[ dx x—&\* x—E\? _ug?
WW(a,S)_/ﬁ[( , ) —7( , ) +4:|e W (x) (3.11)

= a2 1oy (4) — Ta % 114,(2) + 40 14 (0) (3.1%)

and 11,5 (p) = [dvxPe & W(x + &) (note thatd2(a2 — De s = (x* — 7x? + de 7).
Equation (3.11) is reminiscent of RaeFourier reconstruction methods discussed by Handy
(1981, 1986).

We may rewrite equation (8z) as F(z) = 3.[zS(z)] = [ dx W(z — x)D(x), which
becomesd,[z5(z)] = 3! [ dx ~2E=0=2™)] for the case wher#V(x) = 3ie2™ (i > 0)
andD(x) = e 2@,

In the case thaQ(x) = x?¥, we can readily determine the asymptotic form fi).
Consider the integral(z) = [ dx e [c=9"+*1 performing the successive change of
variables £ > 0) y = x — 5, ands = %y yields

I(z) = Ze 2" /ds exp[ 2(5 )ZN(Z (‘g\;)sz’?)} (3.12)
n=1

where( ) = m Rescaling according t® = 3, and defining.? = we transform

the integral into

ze—25)?] N\ [ 2@N-D@-1) ;520
I(z) = EHETE /do exp[— {N(ZN 1)o? +Z< ><—(Z)2N<n—l) )”

(3.13)

2( )ZN ]
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Table 1. S(x), W(x), andD(x).

S(x) W(x) D(x)
V2 x2 2
T3 1e s -92e —92e 7
2 2 2
— X 2 X _ X2
%ﬁe 3 —dfe 2 e 2
2 2
ez 2@2-Dez  JTel

2N
~ 1 w23 o 82e_x2N e_XZN
X 3 — X
x 22 \V NeN-D) x

with asymptotic form

e =2)" T 5
I(z) ~ Q) = 2%(%)1\/ /N(ZN _ asz — +oo. (3.1%)

We then have thas(z) ~ 13.Q(z), if W(z) = 8%e*". Note that if S(z) ~ %[constantt
9,$2(2)], the requirement that = [ dz S(z) < oo would be violated, unless constaat0.
A summary of the various, W, D combinations considered above is given in table 1.

4. Analysis of anharmonic oscillator potentials: ma? + g

It is clear that equation (2.3) represents a pointwise convergent formula for reconstruction;
whereas, equations .@:, b), and its approximation through the dyadic-frame formula in
equation (2.2), achieves a global representation involving all scales and translations.

Our moment formulation provides the flexibility wherein if one is given a wavelet
function of the form = N9 e?™ (Q(x) a polynomial), and its dualP, then we can
calculate the wavelet transforW W (a, b) (as detailed below) and numerically integrate
equations (3Ba, b), in order to recovel (b).

Alternatively, if the associatedS(x) function (equation (3.7)) is of a (similar)
exponential form §(x) = NsP(x)e2™, both P and O polynomials) then we can generate
equations (%a, b) directly, through the integration of equation (2.8). That is, one can use
equation (2.8), without any immediate focus on the underlying wavelet analysis. In this
process, ag; — 0, Us[ay, b] (equation (36a)) will define a multiscale approximation to
the wavefunction. The following examples adopt this perspective.

4.1. Mexican hat waveleyy = —\ja%e %
Consider the anharmonic oscillator potential problem
—92W (x) + [mx® + gx*]W (x) = EW(x) 4.1)

for ¢ = 2, 3, 4, the quartic, sextic and octic anharmonic oscillators, respectively.
Translating by b’, one obtains

—02W(x +b) + [m(x + b2+ gx + )XW (x +b) = EW(x +b). (4.2
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Let @, ,(x) = €7 W(x +b) (y = 55). Substituing¥(x + b) = &, ,(x) in
equation (4.1) one obtains

—[02 + 4y xd, + {2y + 4y°xA}] D, (x)
2q
+[m{x2 +2bx + 0% +g ) (2;’ )b%—fxf}cb%b(x) =Ed,,(x)  (4.3)
i=0

2%\ _ ()
where (%) = T

The power moments of interest afg, ;,(p) = f_ooocd.xxl’@%b(x). Multiplying both
sides of equation (4.3) hy” and performing the necessary integration by parts, one obtains
the moment equation:

—p(p =Dy p(p —2) + [y @p + 2) + mb? + gb* — Elp, ,»(p)
+[2bm + 2ggb* M1y 5 (p + 1)

+lm — 4y? + gq(2q — DD* )y (p + 2)
2q—1 2(,] )

+g Y. ( i )bz""uy,b(p +i) + gy (p+29) = 0. (4.4)
i=3

From equation (4.4) one generates the highest-order momentp + 2¢9) from the
lower-order moments. The linear nature of the moment equation leads to the fact that
given themissing momentgu, ,(1)|0 < | < m, = 29 — 1}, as well as the energyt,
one can generate all the other moments. This is expressed through the relation given in
equation (2.5).

For the present case of tiMexican hat waveletwe have

ay“y,b(p) = _,u)/,b(p +2). (45)

For the first 14+ m; — 2 missing moments (& [/ < m, — 2) this equation simply states that
Ay () = —pyp(l +2). Forl = mg — 1, andmy, the linear relation in equation (2.5)
comes in since the moments , (m +1) andu, »(ms+2) depend on the missing moments.
That is,

Oy uy () = —py sl +2) 0<Ii<mg—-2 (4.60)
and
8yﬂy,b(l) = - ( Z My,b,E(l + 2: l/)ﬂy,b(l/)) (46))
'=0
for I = m, — 1, andm,. Alternatively, summarizing all the above, we have
My.b (0)
i My.b ()
ay .
:u/y,b(ms -1
/’Ly,b(mx)
0 010 0
0 0O 0 . . 0
_ 0 0 0 0 6 0
o 0 0 0O . .
My, pemg+1,0 . . . . M, b g(ms + 1, my)

My,b,E(ms + 2a 0) . . . . My,b,E(ms + 27 ms)
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:uy,h(o)

x| Hre | 4.7)

MHy.b (ms — 1)
/’Ly,b(ms‘)

Since the asymptotic form of the (physical) anharmonic oscillator wavefunctions,

W(x) — e %1 decreases much fasteg (> 2), than the Gaussian form of the
Mexican hat exponential factor, &, we know that the moments, ,(p) are analytic
in y, particularly at the origin. This means that equation (4.7), for the gase2, cannot
have any singular coefficients.

From section 1, knowledge of the physical enerfy,and missing moments at infinite
scale § = % = 0), noo ( < my), suffice to determine all of the missing moments at
arbitrary scaleg = ﬁ and translationb.

Within the context of EMM quantization, only the ground state enerBy, and
corresponding missing moments,,.o0 (! < m,), can be determined. This is because EMM
guantization requires that the configuration desired be non-negative. For excited states, this
is not possible. However, by working with the configuratioh(x) + c)e ™ for some
appropriatel” value, and some sufficiently positive, empirically determined constamie
can still implement the EMM quantization procedure and determine the excited energy,
Eexe, and corresponding missing momentsyat I', andb = 0: pexcr.o (I < my) (Handy
and Lee 1991).

This ‘c-shift’ approach worked very well for the quartic and sextic anharmonic
potentials. For the octic case, it worked too slowly. We circumvented this difficulty
by determining the energies from another EMM formulation (the EMIM? formulation)
(Handy 1987), and used direct Runge—Kutta (RK) integration on thebflictger equation
in order to determine the zeros of the wavefunctiowgxo;) = 0, for the second and
fourth excited states. One can then apply EMM to the modified expres@ion =
Hi(x—xo;i)e*VXZW(x), which can be taken to be non-negative. In this manner, the moments
Mexc:y,0(p) = ffooo dxx"e*“’zlll(x) were determined, fop =T = 1.

As noted in section 1, oncBy and{gr.00()|! < m,} are determined, one can generate
the {ugr.0, (D]l < ms} moments through equation (2.10). Afterwards, one simply integrates
equation (4.7) using fourth-order RK methods. Implicit in this entire process is the adoption
of the normalization prescription in equation (2.6), implemented at 0 andb = 0.

For the excited states, since the missing moments are determined- at andb = 0,
one cannot use equation (2.10) to generate jibg.rp (! < my). Instead, we must
implement another integration, in tlsedirection, in order to generate these moments. Once
the wexe:rb (I < my) are determined, one can integrate equation (4.7) in either direction
(y — 0 ory — o0) in order to generate the wavelet transform (if desired) or recover the
corresponding excited state through equation (2.3).

The aforementioned-integration is accomplished by noting that

Miys(P) =2Y Uy (P +1) — piyp(p — 1) (4.8)

for the Mexican hat case. Utilizing this equation, for all of the missing moments ),

yields a closed set of coupled, first-order, differential equations in the missing moments
(an equation similar to equation (4.7)). One can integrate it by using the EMM generated
excited state moments at = I'. As for the ground state case, the initial moments are
normalized according to equation (2.6) for=T =1 andb = 0.



9908 C R Handy and R Murenzi

An important relation pertinent to the numerical implementation of the above is the
expansion

y.5(P) =/ dr x”e 7 W (x + b)

L [Tavere (1)
_y% —00 vy «/7

1 v n
S Z 2(]:1;" )
Y 2 n=0 )
where W™ (b) = 9pW(b) and vo(p +n) = [ dy yPme=*  Clearly, vo(odd) =
Accordingly, for p = even, the expansion involves only inverse powery dbesides the
y*% factor).

The expansion in equation (4.9) is valid for largevalues. In practice, for the problems
considered here, the RK integration iterates generated from equation (4.7) already begin to
satisfy equation (4.9) at relatively small values,y = O(10). What this means is that
we can truncate equation (4.9) and use it as a sequence acceleration scheme for extracting
W (b). More precisely, leiu,, ,(p) denote a RK integration iterate, then we can solve for
the A coefficients § = 2 and p = even):

Yy 2w (p) (4.9)

N

1 _
Hyn(p) = —o5 D v "APPIN (4.10)
Vi Z =0
for I <i <1+ N. They, " defines anN + 1) x (N + 1) matrix, which can be inverted

to yield theAg’ bINg,

For fixed p and b, if the initial iterate u,, ;,(p) is associated with a sufficiently large
y; value (within the RK domain of numerical stability), then Asincreases (as well as
‘I') the ADP"" coefficients should better approximate the expansion in equation (4.9).
This is numerically verified for 6< N < 8, within the limits of our numerical analysis.
In particular, most of the plots in figures 1-3 and figure 10 were obtainedvfge 4.
The results of the preceding analysis verified equation (2. 3)pf@fO and 2, through the

relation le,%oAvpL = W(b). Note thatv,(0) = /7, andv,(2) =

The numerlcalzresults for the quartic, sextic and octic anharmonlc oscillatessX( 3, 4,
respectively) are depicted in figures 1-3. We show the results for the first three symmetric
states. Note that once the moment normalization in equation (2.6) is adopted, equation (2.3)
yields the estimate for the corresponding configuration space wavefunctioa & W (0).
Utilizing this as input, we calculate the ‘exact’ wavefunction through direct integration of the
Schiddinger equation, in order to compare with the estimate f#r0 from equation (2.3).
The excellent results depicted corresponaite= g = 1. In table 2 we list the energies and
initial moment values.

In the quartic caseg = 2, we computed both the pointwise estimates for the
wavefunctions as well as the corresponding Mexican hat wavelet transforms:

WW(a,b) =

2 2
_ Nha /dx — 9273 W(x + b)
a

5 b2
ore 22 W(x)

or
WW(a, b) = Ni2y)#[1ty.5(0) — 2y 11,5(2)]. (4.11)
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Figure 1. MQ—8_fe‘7 reconstruction foV (x) = x2 + x%.

Clearly, whereas the the pointwise estimates¥gb) only require calculating the limits in
equation (2.3), the determination of the wavelet transforms requires being able to calculate
the moments for alj values. For the quartic anharmonic oscillator ground state, we are able
to generate the missing momentsyat= 0, and arbitrary »’, and integrate equation (4.7)
forwards ¢ — ©0).

This is not the case for the excited states. One must integrate backwares0(") in
order to determine the missing moments in the regicd § < 1. When we did so, using
as input the previously obtained missing momefpts, (/)}, we found that forb > 1, the
generateduo,(!) values were significantly in error. In particulatg ,(0) did not remain
constant for all ’, as it should. This numerical instability arose despite the fact that if
one integrates forward/(— o0), utilizing the same starting (/) values, good pointwise
estimates for (b) can be obtained (to better than 1%).

In order to generate accurage, (/) values, particularly for 0< y < 1, (with
which to generate the wavelet transform) we took the= 0 backwards integration
generated values for the missing moments and used them to generate all the missing
moments,{uo ()}, through equation (2.10). With these more accurate starting missing
moments, we then integrated forwards and generated the missing moments within the region
[0, O(10%)] x [—2, 2], leading to exceptionally accurate pointwise results¥igb) (i.e. the
agreement between the asymptotic estimategpfer0, 2 in equation (2.3) was better than
six decimal places). This is the underlying numerical analysis for figure 1 and the wavelet
transforms depicted in figures 4-9.



9910 C R Handy and R Murenzi
1.6

|
o X

Fon(x)  —
| E23).p=0 x
| E23),p=2 o

- ® 0.18 |

— L 0.09

00T T T T T T T T T T
0.0 1.0 2.0 3.0
x

—1.6 T T T [ T T T T [T T T T [T T T T [ T T T T [ TTT]I
0.0 0.5 1.0 1.5 2.0 2.5 5.0

X

)2
Figure 2. MQ—2e~Z reconstruction forV (x) = x? + x5.

An important observation relevant to the Hamiltonians investigated in this work is that
since the expansion in equation (4.9) agrees with the RK iterates (for sufficientlylarge
values), within the region of numerical stability for the RK integration, we can then use it
to approximate the missing moments in regions of numerical instability for the RK iterates.
In this manner, the wavelet transform can also be approximated in such regions as well.
These considerations were not necessary for the wavelet transform plots in figures 4-9.

4
4.2. Quartic waveletyy = —N32e~7

The analysis for the quartic wavelet transform

L
WW(a,b) = ﬁfdx( yote W(x) (4.12)
or
Ny 5 _w?
WV (a, b) = —/dx(—)aie 2% YU (x + b) (4.13%)
\/5 a
Ni s
= 2—;‘y§[12uy,b(2> — 16y 11,5(6)] (4.13%)
where

Iyb(p) = /d”pefyﬁ‘l’(x +b) (4.13)
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Figure 3. MQ—a2e~Z reconstruction forV (x) = x? + x8.

proceeds similarly to the Mexican hat case. Note that pow %. In particular, denoting

Dy p(x) = e 7" W (x +b), the analogous substitutions in the Sifinger equation (as done
in the context of equation (4.4)) leads to the moment equatign (p) = / dx x?®, ,(x)):

—p(p — Dty (p — 2) + [mb® + gb® — Elpay 1 (p) + [2bm + 28gb* Y11, (p + 1)
+[m + y(Bp +12) + gq(2q — Db* |y 1(p + 2)
2g—-1 2q ]
+g ) ( ; )bzq’uy,b(p +i) + gitys(p +29) — 16y%j1, 5 (p +6) = 0.
i=3

(4.14)

It is readily apparent that for the quartic and sextic anharmonic oscillator potentials
(g = 2 and 3, respectively), solving for the highest-order moment,(p + 6) in

both cases) will involve a singular coefficient. Specifically, in the quartic case one has
moment expression

Uy s(p +6) = 15z whereas for the sextic problem, the corresponding moment
equation is of the form:u, ,(p + 6) = %ﬁfgrmon These results are simple to
understand.

For the quartic anharmonic problem, the moments (equatidiB{¥) are not analytic
at the origin in the compley- plane. This is because the asymptotic form of the physical

Y3 . .
bound state solutions, (i.e.‘ég%) is much weaker than the'&** wavelet exponential for
y < 0.
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Table 2. Energy and missing moment values.

0(x) tyo =0,2,..)

V(x) (equation (1.1)) E (iy,0(0dd) = 0) y

x24 x4 —x2 1.3923516415306 0.642670622325726
0.35732937767474

x24 x4 —x2 8.655049 957 —0.286 4648521 1
1.286 464852 1

x24 x4 —x2 18.0575574 0.641570459 1
0.358429541

x24x8 2 1.435624619008 0.49369999530589 O
0.231502508 70018
0.274797 495 99393

X248 —x? 9.966621999%  —0.059348906'8 1
0.461920793 71
0.597 42811309

x24x8 2 22.91018 0.067 62348 1
0.15929095
0.77308559

x24+x8 —x? 1.491019895662  0.40904684174326 0

0.170212 946 241 30
0.172497 535939 30
0.248242676 076 15

x24+x8 —x? 10.99373734 —0.0178733418 1
0.2757316252
0.3170713064
0.4250704102

x24+x8 —x? 26.7434486 0.036 2024979 1
0.087 695 169 7
0.290586 1795
0.585516 1536

x24xt 1.392351641530 0.71237488541396 1
0.180 129 004 250 33
0.107496 11033571

X248 x4 1.435624619003  f1
0.358 906 154 750 85
0.314406 81395902

x24x8 x4 1.491019895662 0.40904684174326 O
0.170212946 241 30
0.172 497535939 30
0.248242 676076 15

Bl

@ Conventional EMM analysis.

b C-shift EMM analysis.

¢ Energy predetermined from EMN¥ |2 formulation.

d Zeros of wavefunction are predetermined through direct RK on thedSirtger equation,
together with predetermined energy, followed by generation of moments from conventional
EMM analysis ofI1; (x — xo;;) W (x).

€ Conventional EMM with inputed predetermined energy.

f The potentialV (x) = x? + x® defines a zero missing moment problemyat 3; hence the
adopted normalization iﬂ%_O(O) =1.

The same applies for the sextic anharmonic oscillator whose bound state wavefunctions
X4 .
have the asymptotic form:"&¢'=. The moments are analytic at= 0 but not aty = —%g
(ory?=£).
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Figure 4. Mexican hat wavelet transformiy ¥ (a, b), for the V(x) = x2 4+ x4 ground state.

The integralffoOO dx e‘Vx4\IJunphysica(x) exists in the limity — oo. However, from the

JWKB zeroth-order approximation to the unphysical wavefunctiBghpnysica(x) ~ e%gx“,

such integrals become singularyat= +‘/T§.

In general, the integra) > dr €24 Wynpnysicafx) Will not exist, in thea — 0 limit,
if the asymptotic behaviour of the unphysical wavefunction dominates the exponentially
decreasing expressiorf@’ (Q(x) assumed to be a polynomial with a negative, highest-
degree coefficient). The only possible way of defining such integrals is by an appropriate
analytic continuation. Such is the case for the Mexican hat wavelet and anharmonic
potentials considered previously, as well as ﬂf@*% wavelet analysis of the octic

o

anharmonic potential (discussed below). For tife~= wavelet analysis of the quartic
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Figure 5. Square of Mexican hat wavelet transformW (a, b)2, for the vV (x) = x2+x* ground
state.

anharmonic oscillator problem, the corresponding integral exists for all non-negative values
of y.

None of the above complications holds for the octic anharmonic potential.

Before continuing with a description of the manner by which the moments, at all scales
and translations, are obtained, we develop the counterparts to equations (4.7) and (4.8) for
the quartic wavelet case under consideration.

In order to generate a coupled set of first-order differential equations for the moments,
we simply make use of the relations

Iy typ () = =y (I +4) (4.15)
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Figure 6. Mexican hat wavelet transfornW W (a, b), for the V(x) = x2 4+ x* second excited

state.

and

abﬂy,b(l) =4y My,b(l +3) — lﬂy,b(l - 1.

(4.16)

Although these equations hold for dllvalues, it is sufficient to restrict them to the

missing moments, & [ < my.

We symbollze the linear dependence of the moments on the mlssmg
yb,E(p’l)/*Ly.b(l) (again, M @)

wyp(p) =

coefficients are singular gt = 0 andy

Y b,E(lv ]) =
= :l:%, for the quartic and sextic anharmonic

8i.5)-

The M

moments by:

ARTN)

oscillators, respectively. In addition, the structure of equation (4.15) leads to a significantly
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Figure 9. Square of Mexican hat wavelet transforfir,W (a, b)2, for V(x) = x2 + x* fourth
excited state.

My,h(o)
My.b(j)
Myfb(n;s - 3) (417)
/’Ly,b(mx - 2)
/’Ly,b(ms -1
/Ly,b(ms)

The singular nature of thMﬂqE coefficients, for the quartic and sextic anharmonic
oscillators, does not affect the fact that the physical moments are analytic f0o0. We
can exploit this in order to facilitate the integration of equation (4.17) in the lmit oco.
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4.2.1. The quartic anharmonic potential and th@fe*% wavelet. As noted above, the
uy.»(p) moments for the quartic anharmonic oscillator will not be analyticyas 0,
although they are finite and computable using EMM. However, because of the singular
M( ) .. Coefficients, we cannot (numerically) integrate equation (4.17) in order to determine
the moments at all scales. For this reason, it is preferable to determine the moments for
some positive value of. We do this fory = 1 and determine, using EMM, the; o(/)
(missing) moments. Subsequently, we use equation (4.16) to generaté-tlependence,
and then use théu1 ,(1)|0 < I < my} in the numerical integration of equation (4.17).

For completeness, we need to be more specific in how we use EMM in this case.
Normally, EMM will not work on configurations of the forrd (x) = e‘V"A\IJ(x), where the

asymptotic growth of the unphysical statds(f) — e+ﬁ¥) is slower than the asymptotic
decrease of the&*" factor. Under such conditions, EMM cannot determine the physical
energy.

However, if the energy is knowa priori, then EMM can be used to determine the
wy.0(l) power moments. For this problem, we can use other EMM re-formulations (Handy
1987) (such as the EMNW |2 formulation) to generate the physical energy, and then use the
conventional EMM formulation to determine the desired moments. This is the procedure
adopted here.

4.2.2. The sextic anharmonic potential and théfe*% wavelet. Again, as noted in the
preceding discussion, the, ,(p) moments for the sextic anharmonic oscillator are analytic
at y = 0. We can use EMM to determine theyo(/)’'s (missing moments), followed
by the generation of theo,(l)’'s, and then the integration of equation (4.17), in order to
determine the moments at all scales. However, the singular nature M;fh% coefficients

(aty = ¢T§) , will complicate the numerical integration of these equations. Nevertheless,

since the moments are analyticjat= ¢T§’ we can develop a perturbative analysis there.
We can use EMM to determine the momerits.z ,(p)|0 < p < 30}, as well as

the {nz ,(p)|0 < p < 30} moments (througtb-integr%tion of equation (4.16)), and then

approximate the moments for = JTE + 8y through the power series expansion:

NG
M@My.b(l’) = fdxx” exp(—ﬁyx4 - Tx4 W(x +b)

fa(2C 8)/Ix)> exp(~ ) wis 4
— i 4

6 i
= S+ 40 (4.18)
i=0

The above expansion enables us to determine the missing moments at sonﬂ%j%y,
sufficiently far from the singular point, from which to integrate equation (4.17) in the
y — oo limit. For the casen = g = 1 we can takéy = 0.1 (for |p] < 2).

4.2.3. The octic anharmonic potential and théfe*§ wavelet. For the octic anharmonic
oscillator, none of the above complications is present. Accordingly, we can determine the
woo()'s, generate theuo,(1)'s, and proceed to numerically integrate the corresponding
version of equation (4.17). We implemented the various numerical approaches outlined
above. The plots for the ground state wavefunction, for all three cases, are depicted in
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Figure 10. MQ—a2e~ 7 reconstruction foV (x) = x2 4+ x%, g = 1,2, 3.

figure 10. The results are excellent. Again, we used the quartic wavelet counterpart to the
asymptotic expansion in equation (4.9), or:

wam=/ dr xPe " W (x + b)

1 o
Tp/ dy ype_y4\I/ (Ll + b)
y 4 —00 ya

_ 1 ZM(P"'”)V—%W(M(Z)) (4.19)

p 1
Y 4 n=0 n:

wherew ™ (b) = 3/ W(b) andva(p +n) = [° dy yP+e",

For the quartic wavelet, we havey(0) = 1.8128, while v4(2) = 0.612708. An
important distinction between the above expansion and that for the Mexican hat case
(equation (4.9)) is that fop = even, one is working with inverse powers gfy. An
analogous numerical analysis to that in equation (4.10) was implemented, leading to the
excellent results depicted in figure 10.

For the quartic wavelet case, we did not investigate the excited states. These can also
be studied through the methods presented for the excited states in the Mexican hat wavelet
formulation.
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5. Conclusion

We have established that MQ, in the context of rational fraction @thger potentials, is
equivalent to CWT theory. The rescaled and translated power momenisp), satisfy

a simple finite set of coupled, first-order, differential equations i 51 enabling their
generation to arbitrary scale, as well as the generation of the desired continuous wavelet
transform. Knowledge of the latter, combined with appropriate dyadic reconstruction
formulae, allow us to approximate the desired solution. Prior studies by HM show that
this approach can lead to poor results because only dyadic scale information2"

and b = n2") can only be sampled. A better approach is to use equation (2.3) to
recover the desired solution. However, this manifestly honwavelet-based result, is in fact
equivalent to a wavelet-based reconstruction analysis in which all scales and translations
(VI % < 00, —0 < b < o0) are involved (as shown in section 3). Indeed, the important
(group-theory based) signal-wavelet reconstruction formula given in equatiéb),(& a
straightforward result motivated by desiring a more global interpretation of equation (2.3).
While the determination of the energy is, essentially, an infinite seale= (co) result
(achived through the use of such methods as the EMM), the recovery of the corresponding
wavefunction ensues from a multiscale analysis proceeding drespo to a = 0, through

the aforementioned reconstruction analysis.

We applied this formalism to important anharmonic potentials, including the quartic,
sextic and octic anharmonic oscillators, and examined the first three symmetric states
in each case. Excellent results were achieved in all cases. Also, in contrast to the
previous HM formulations, we examined the consequences of the formalism with respects
to various mother wavelet functions, including thtexican hatwavelet, and those based
on Q(x) = —3x*.
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Appendix

It is a well known theorem that the bosonic ground state wavefunction, in any dimension,
must be of uniform signature, and can be taken to be positlgg £ 0). Accordingly,

there should be an intimate relationship between MQ of the ground state and the classic
moment problem (Shohat and Tamarkin 1963, Akhiezer 1965). This is exploited in the
EMM approach (Handy and Bessis 1985, Hamd\al 1988a, b). Specifically, the bosonic
ground state energyEy, and normalized missing momentiyoo()|1 < I < my}, are
determined by imposing the infinite set of constraints arising from the moment problem:

00 N 2
/ dx (ch{xi) Wgr(x) >0 (A1)

o0 i=0
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for N < oo, and arbitraryc;’s. Alternatively, in terms of the moments, we obtain the
guadratic form inequalities

N N

> D citooli + j)e; > 0. (A-2)

i=0 j=0
Substituting the missing moment dependence from equation (2.5), one obtains

mg N N
> oo [ YN iMook + J, l)cj’-] > 0. (A.3)
=0

i=0 j=0
Imposing the normalization in equation (2.6),0(0) = 1— >/, o0(l), an (uncountably)

infinite set of linear inequalities are obtained constraining the missing moments and
(implicitly) the energy:

ZA[E; ¢, Nuoo(l) < BLE; '] for all ¢is (A.4)

=1
where A[E:; ¢/, 1] = Y1 oo cl[Moos(i + j.0) — Moo (i + j.D]c;, and B[E; ¢'] =
S oY oci Moo (i + j.0)c). We denote the polytope solution to equation (A.4) by
Un(E).

These infinitely many linear inequalities are equivalent to a finite number of nonlinear

inequalities (in the missing moments) as defined by the corresponding set of Hankel—
Hadamard determinantal inequalities (also arising from the moment problem)

Aon[1oo(p)] = Aon[E, ioo(D), ..., poolms)] > 0 (A.5)
where
10,0(0) wo,0(1) .- Moo(N)
Aow[roo(p)] = Det wo,0(1) Ho,0(2) ... poo(N +1) (A.6)
too(N)  poo(N+1) ... wuoo(2N)
andN — oo.

The missing moments of the physical, bosonic, ground state wavefunction must satisfy
either equation (A.4) or (equivalently) equation (A.5). In the original EMM formulation
(Handy and Bessis 1985), the determinantal inequalities were used on problems of missing
moment order no greater than twa (< 2). However, for problems with larger numbers of
missing moments (in particular, all multidimensional SQatinger equation problems involve
an infinite hierarchy of missing momenis, — oo) one must adopt the linear formulation
represented by equation (A.4). In this case, practical demands require the identification of
an optimal, finite number of’ vectors that can quickly tell us, for a givefi value, if
equation (A.4) has no solutio{y(E) = {#}. This is done through the combination of
linear programming (Chvatal 1983) and the deployment of a ‘cutting method’ developed by
Handy and co-workers (Handst al 1988a, b). This approach, to given ordér generates
a feasibility energy intervatEl(\,L), E,(VU)) which contains the true ground state energy,

EV < Eq < EY. As N — oo, the lower and upper bounds converge (geometrically)

to the physical solution: Lim..E\ = Eq = Limy_EY’. Also, the size of the

corresponding feasible polytopiy (E), for E € [E\, E{], reduces as well, a8 — oc.

Only for the correct physical energ¥g, will Lim y_, Uy (Egr) = {ugr(1), ..., pgr(my)}.
Numerous examples have been published since the linear programming-based EMM

formalism was developed in 1988, establishing the power of the method. This approach
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was used to yield the first converging, eigenenergy bounding, analysis for the famous, and
highly singular, three-dimensional problem: theadratic Zeeman effect for superstrong
magnetic fieldgHandyet al 1988a, b).

Although the preceding discussion focused on the bosonic ground state, one can
extend the same formalism to excited states provided one works with the representation
(W (x) +c)R(x), wherec is a sufficiently positive constant ensuring thigtiiedx) +c¢ > 0
(empirically determined), and the reference functidgt(x), is appropriately chosen in
accordance with the zeroth-order asymptotic form of the physical solution. This is explained
in the work by Handy and Lee (1991).

Of special importance to the philosophy presented at the outset is the fact that the above
inequality constraints automatically take into account all necessary scale and translation
parameter variations. That is, the polynomi.;(x) = Z,N:o ¢;x', under an arbitrary

affine transformatiorPN;g(Xa;”), will become anotheiNth-degree polynomial with different

c-coefficient vaIuesPN;g(Xa;b) = ZiN:o cix'. However, these are automatically sampled in

the variational implementation of equation (A.1). The same holds for more general sums,
Zn PN;EU()"b”). Accordingly, equation (A.1) is equivalent to working with

oS —b 2
/_ dx (Z PN;gv<x . ”)) Wgr(x) > 0 (A7)
o0 n

for arbitraryc, a, b variational parameters. Of course, equation (A.1) is a better formulation
since the nonlinear appearance of #hé parameters in equation (A.7) is assimilated through
the linear contribution of the”s.

This should be contrasted with an alternate variational prescription, such as the
traditional Rayleigh—Ritz approach, wherein explicit translation and scale varidb|es, },
should be introduced within the basis sBt(x) (i.e. Gaussians, etc), in addition to the usual
variational coefficients:

(X, niBICTDIHIL, e 1B (5)
(X eniBiCTDIE, e B (52

The contribution of the lineat variables remains distinct from that of the nonlinearly
contributinga,, b, variational parameters.

Eg < Ming (A.8)
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